A Modified Porous Titanium Sheet Prepared by Plasma-Activated Sintering for Biomedical Applications
نویسندگان
چکیده
This study aimed to develop a contamination-free porous titanium scaffold by a plasma-activated sintering within an originally developed TiN-coated graphite mold. The surface of porous titanium sheet with or without a coated graphite mold was characterized. The cell adhesion property of porous titanium sheet was also evaluated in this study. The peak of TiC was detected on the titanium sheet processed with the graphite mold without a TiN coating. Since the titanium fiber elements were directly in contact with the carbon graphite mold during processing, surface contamination was unavoidable event in this condition. The TiC peak was not detectable on the titanium sheet processed within the TiN-coated carbon graphite mold. This modified plasma-activated sintering with the TiN-coated graphite mold would be useful to fabricate a contamination-free titanium sheet. The number of adherent cells on the modified titanium sheet was greater than that of the bare titanium plate. Stress fiber formation and the extension of the cells were observed on the titanium sheets. This modified titanium sheet is expected to be a new tissue engineering material in orthopedic bone repair.
منابع مشابه
Simulation of deformation behavior of porous Titanium using Modified Gurson yield function
In this research the stress-strain curve of porous Titanium, as a common material for biomedical application, was predicted using the mechanical properties of fully solid Titanium experimental data. Modified Gurson model (Gurson-Tvergaard-Needleman (GTN) model) was used to predict the plastic response of porous Titanium in compaction. Different values of GTN parameters were used for different i...
متن کاملPorous NiTi alloy prepared from elemental powder sintering
An elemental powder sintering (EPS) technique has been developed for the synthesis of porous NiTi alloy, in which Ni and Ti powders are used as the reactants and TiH2 powder is added as a pore-forming agent and active agent. Effects of various experimental parameters (sintering temperature, sintering time, and TiH2 content) on the porosity, pore size and pore distribution as well as phase compo...
متن کاملTitanium Sheet Fabricated from Powder for Industrial Applications
In collaboration with Ametek and Commonwealth Scientific and Industrial Research Organization (CSIRO), Oak Ridge National Laboratory has evaluated three different methods for converting titanium hydride-dehydride (HDH) powder into thin gauge titanium sheet from a roll-compacted preform. Methodologies include: sintering, followed by cold rolling and annealing; direct hot rolling of the rollcompa...
متن کاملTitanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts
Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheri...
متن کاملTHE FEASIBILITY STUDY OF W-Cu COMPOSITE PRODUCTION BY SUBMICRON PARTICLES ADDITION AND INFILTRATION
In this paper the feasibility of fabricating controlled porous skeleton of pure tungsten at low temperature by addition of submicron particles to tungsten powder (surface activated sintering) has been studied and the best parameters for subsequent infiltration of Cu were acquired. The effects of addition of submicron particles and sintering temperature on porous as well as infiltrated samples w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010